skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Clayton, Tara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 6, 2025
  2. Curved aromatic hydrocarbons often display better solubility and more desirable electronic properties in comparison to their flat counterparts. Macrocyclic curved aromatics possess these traits as well as shape-persistent pores ideal for host-guest interactions. A quintessential macrocyclic curved aromatic molecule is the cycloparaphenylene, or [n]CPP. Our group has developed a new class of these carbon nanohoops, called [n+1]CPPs, that incorporate a strained alkyne (“+1”) into the carbon backbone. We have previously shown the [n+1]CPPs to be a promising new class of strain-promoted azide-alkyne cycloaddition click reagents. Herein, we show that the [n+1]CPPs can also be converted into pinwheel-like multi-pore large molecules via a straightforward and high yielding metal-mediated alkyne cyclotrimerization reaction. We provide insight into suitable metals for this transformation, the photophysics of these trimeric molecules, as well as their strain profiles and crystal packing. 
    more » « less
  3. Polycatechol nanohoop ligands are readily synthesized from fluorinated precursors and metalated, opening the door to new carbon nanohoop-based metal–organic materials. 
    more » « less